\(\int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx\) [189]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 207 \[ \int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {231 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {21 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{2 a^3 d}-\frac {21 \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a^3 d}+\frac {77 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{10 a^3 d}-\frac {\cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {63 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \]

[Out]

231/10*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d-21/2*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+77/10*cos(d*x+c)^(3/2)*s
in(d*x+c)/a^3/d-1/5*cos(d*x+c)^(9/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^3-4/5*cos(d*x+c)^(7/2)*sin(d*x+c)/a/d/(a+a*
cos(d*x+c))^2-63/10*cos(d*x+c)^(5/2)*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))-21/2*sin(d*x+c)*cos(d*x+c)^(1/2)/a^3/d

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2844, 3056, 2827, 2715, 2720, 2719} \[ \int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {21 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{2 a^3 d}+\frac {231 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {63 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{10 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac {77 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{10 a^3 d}-\frac {21 \sin (c+d x) \sqrt {\cos (c+d x)}}{2 a^3 d}-\frac {\sin (c+d x) \cos ^{\frac {9}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}-\frac {4 \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{5 a d (a \cos (c+d x)+a)^2} \]

[In]

Int[Cos[c + d*x]^(11/2)/(a + a*Cos[c + d*x])^3,x]

[Out]

(231*EllipticE[(c + d*x)/2, 2])/(10*a^3*d) - (21*EllipticF[(c + d*x)/2, 2])/(2*a^3*d) - (21*Sqrt[Cos[c + d*x]]
*Sin[c + d*x])/(2*a^3*d) + (77*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(10*a^3*d) - (Cos[c + d*x]^(9/2)*Sin[c + d*x])
/(5*d*(a + a*Cos[c + d*x])^3) - (4*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(5*a*d*(a + a*Cos[c + d*x])^2) - (63*Cos[c
 + d*x]^(5/2)*Sin[c + d*x])/(10*d*(a^3 + a^3*Cos[c + d*x]))

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2844

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {\int \frac {\cos ^{\frac {7}{2}}(c+d x) \left (\frac {9 a}{2}-\frac {15}{2} a \cos (c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx}{5 a^2} \\ & = -\frac {\cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {\int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (42 a^2-\frac {105}{2} a^2 \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{15 a^4} \\ & = -\frac {\cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {63 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )}-\frac {\int \cos ^{\frac {3}{2}}(c+d x) \left (\frac {945 a^3}{4}-\frac {1155}{4} a^3 \cos (c+d x)\right ) \, dx}{15 a^6} \\ & = -\frac {\cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {63 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )}-\frac {63 \int \cos ^{\frac {3}{2}}(c+d x) \, dx}{4 a^3}+\frac {77 \int \cos ^{\frac {5}{2}}(c+d x) \, dx}{4 a^3} \\ & = -\frac {21 \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a^3 d}+\frac {77 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{10 a^3 d}-\frac {\cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {63 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )}-\frac {21 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{4 a^3}+\frac {231 \int \sqrt {\cos (c+d x)} \, dx}{20 a^3} \\ & = \frac {231 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {21 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{2 a^3 d}-\frac {21 \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a^3 d}+\frac {77 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{10 a^3 d}-\frac {\cos ^{\frac {9}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {4 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {63 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.10 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.85 \[ \int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {\sqrt {\cos (c+d x)} \csc (c+d x) \left (-\left ((614+2995 \cos (c+d x)-766 \cos (2 (c+d x))-1139 \cos (3 (c+d x))+290 \cos (4 (c+d x))+127 \cos (5 (c+d x))-10 \cos (6 (c+d x))+\cos (7 (c+d x))) \csc ^4(c+d x)\right )+1680 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+7040 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {7}{2},\frac {7}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )}{160 a^3 d} \]

[In]

Integrate[Cos[c + d*x]^(11/2)/(a + a*Cos[c + d*x])^3,x]

[Out]

(Sqrt[Cos[c + d*x]]*Csc[c + d*x]*(-((614 + 2995*Cos[c + d*x] - 766*Cos[2*(c + d*x)] - 1139*Cos[3*(c + d*x)] +
290*Cos[4*(c + d*x)] + 127*Cos[5*(c + d*x)] - 10*Cos[6*(c + d*x)] + Cos[7*(c + d*x)])*Csc[c + d*x]^4) + 1680*H
ypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2] + 7040*Cos[c + d*x]*Hypergeometric2F1[3/4
, 7/2, 7/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2]))/(160*a^3*d)

Maple [A] (verified)

Time = 11.21 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.43

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (64 \left (\cos ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-288 \left (\cos ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-76 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-210 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-462 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+530 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-248 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+19 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}{20 a^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(296\)

[In]

int(cos(d*x+c)^(11/2)/(a+cos(d*x+c)*a)^3,x,method=_RETURNVERBOSE)

[Out]

-1/20*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(64*cos(1/2*d*x+1/2*c)^12-288*cos(1/2*d*x+1/2*c)
^10-76*cos(1/2*d*x+1/2*c)^8-210*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5-462*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)
*cos(1/2*d*x+1/2*c)^5*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+530*cos(1/2*d*x+1/2*c)^6-248*cos(1/2*d*x+1/2*c)^4+
19*cos(1/2*d*x+1/2*c)^2-1)/a^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)^5/sin(1
/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 364, normalized size of antiderivative = 1.76 \[ \int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {2 \, {\left (4 \, \cos \left (d x + c\right )^{4} - 8 \, \cos \left (d x + c\right )^{3} - 147 \, \cos \left (d x + c\right )^{2} - 238 \, \cos \left (d x + c\right ) - 105\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 105 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 105 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 231 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 231 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{20 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(cos(d*x+c)^(11/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

1/20*(2*(4*cos(d*x + c)^4 - 8*cos(d*x + c)^3 - 147*cos(d*x + c)^2 - 238*cos(d*x + c) - 105)*sqrt(cos(d*x + c))
*sin(d*x + c) - 105*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqr
t(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 105*(I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*
cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c
)) - 231*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weier
strassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 231*(I*sqrt(2)*cos(d*x + c)^3 +
 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse
(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c)
 + a^3*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(11/2)/(a+a*cos(d*x+c))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {11}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(cos(d*x+c)^(11/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(11/2)/(a*cos(d*x + c) + a)^3, x)

Giac [F]

\[ \int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {11}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate(cos(d*x+c)^(11/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(11/2)/(a*cos(d*x + c) + a)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {11}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{11/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

[In]

int(cos(c + d*x)^(11/2)/(a + a*cos(c + d*x))^3,x)

[Out]

int(cos(c + d*x)^(11/2)/(a + a*cos(c + d*x))^3, x)